Big Tech

The big tech race for the better LLM is on high speed, steady now

Big tech is charging ahead in LLM development. Around a decade after virtual assistants like Siri and Alexa were introduced, a new wave of AI helpers with more autonomy is raising the stakes. Experimental systems that run on GPT-4 or similar models are attracting billions of dollars of investment as Silicon Valley competes to capitalize on the advances in AI.

Amazon’s cloud computing division released a suite of technologies aimed at helping other companies develop their own chatbots and image-generation services backed by AI. Microsoft and Alphabet are also considering selling the underlying technology to other companies through their cloud operations. Microsoft has now launched Copilot, which integrates generative AI in Windows 11 applications, including Photos, Snipping Tool, and Paint with generative AI capabilities such as text-to-image.

Read more: Impact of predictively profit loving big tech layoffs on job seekers & stuff

Apple is quietly working on AI tools to challenge Microsoft-backed OpenAI Inc., Google, and others. The company built its own framework to create large language models and its own chatbot service, which some engineers are calling “Apple GPT.”

Also, it seems Meta is going to release a multimodal version of Llama shortly. In July, the tech giant brought out CM3leon, which does runs text-to-image and image-to-text generation. In May, it also unveiled ImageBind, a first of its kind AI model that can bind data from six modalities (images and video, audio, text, depth, thermal and inertial measurement units (IMUs) at the same time, without any explicit supervision. 

The speed at which big tech is pursuing success in LLMs makes you feel like calling out ‘steady now.’ But no one wants to be left behind, so no one will listen

Meanwhile, OpenAI finally launched multimodal ChatGPT, which integrates image features into the chatbot by integrating Dall-E 3 with ChatGPT Plus and ChatGPT Enterprise. This will usher in many new image-based applications for GPT-4, for example, generating text to match images. 

This is coming just before Google is launching its Gemini, which is also expected to have multimodal functionality.

LinkedIn launched a pretty effective AI growth loop too.

In India, in August, Tech Mahindra launched Project Indus, which the company is using to create its own advanced language model to improve communication across many Indian languages, starting with Hindi. In the first phase, it aims to cover 40 Hindi dialects (Kinnauri, Kangri, Chambeli, Garhwali, Kumaoni, Jaunsari and more), and then go on to other Indian languages and dialects, catering to 25% of the world’s population.

Infosys co-founder Nandan Nilekani-backed AI4Bharath is also onto similar development, which is working on creating open-source datasets, tools, models and applications for Indian languages. Last year, the Indian government also brought out Project Bhashini, in partnership with Microsoft, establishing language datasets and AI applications with crowdsourcing initiatives such as Bhasha Daan and others.

The race for the best LLM is heating up. The speed at which big tech is pursuing success in LLMs makes you feel like calling out ‘steady now.’ But no one wants to be left behind, so no one will listen.

When the likes of Geoffrey Hinton, an AI pioneer says he quit Google to speak freely about the technology’s dangers, after he realized that computers could surpass people in smartness way earlier than he and other experts had expected, it feels like a ‘steady now’ moment.

Read more: Big tech & India work towards language inclusive tech

AI models are getting so good that, according to the Guardian, they have more than 90% accuracy “listening” to keystrokes to identify typed content. “Typing in a password while on Zoom call could spell disaster,” it says.

But then, none of these big companies reached where they are by listening to the ‘steady nows’. Microsoft Founder Bill Gates said in July, “The risks of AI are real but manageable.” “Today’s and tomorrow’s AIs might be unprecedented—but nearly every major innovation in the past has also introduced novel threats that had to be considered and controlled. If we move fast, we can do it again. If we manage the risks of AI, we can help ensure that they’re outweighed by the rewards (of which I believe there are many),” he says. This makes sense too.

Navanwita Bora Sachdev

Navanwita is the editor of The Tech Panda who also frequently publishes stories in news outlets such as The Indian Express, Entrepreneur India, and The Business Standard

Recent Posts

Disrupting Fintech: How product studios are transforming financial services

In the rapidly evolving financial technology landscape, innovative product studios are emerging as powerful catalysts…

2 days ago

Harnessing the power of AI: Preparing today’s workforce for tomorrow’s challenges

In an era defined by rapid technological advancement, Artificial Intelligence (AI) stands as a transformative…

2 days ago

Indian esports makes history at BRICS Esports Championship in Moscow

In a historic moment for Indian esports, Wasfi “YoshiKiller” Bilal secured a silver medal at…

3 days ago

Geek Appeal: New gadgets & apps on the block

The Tech Panda takes a look at recently launched gadgets & apps in the market.…

3 days ago

Ecosystem harkat: India’s Biotech & space tech, early stage tech startups & women entrepreneurs in blockchain

The Tech Panda takes a look at what’s buzzing in the startup ecosystem. The startup…

3 days ago

Harris vs. Trump: Forecasting Bitcoin’s Future in a Post-Election Economy

With just days until the outcome of the U.S. presidential race, Bitcoin enthusiasts across the…

4 days ago